Search results for "small angle x-ray scattering"

showing 8 items of 8 documents

Effect of Pre-Reduction on the Properties and the Catalytic Activity of Pd/Carbon Catalysts: A Comparison with Pd/Al2O3

2013

The effect of pre-reduction in solution with chemical reagents on the catalytic performance and catalyst properties of Pd/carbon catalysts was systematically investigated with a multitechnique approach. The results are critically discussed in comparison to those recently obtained on analogous Pd/alumina catalysts. It was proved that the Pd phase on the carbon surface is characterized by a high mobility, opposite to what occurs on alumina. As a result, the Pd particles on carbon aggregate together during pre-reduction, with a consequent decrease in available metal surface. Pd particles remain aggregated also in reaction conditions; the decreased Pd dispersion negatively affects the catalyst …

characterization techniqueCO chemisorptionInorganic chemistryPd-based catalystchemistry.chemical_elementTPRHeterogeneous catalysisPd/CarbonCatalysisCatalysisMetalCharacterization techniquesCatalyst pre-reductionTemperature-programmed reductionX-ray absorption spectroscopymetal nanoparticlein situPd-based catalystsPd/aluminaSAXSGeneral ChemistryXANESSmall Angle X-ray ScatteringX-ray Absorption SpectroscopyPd/Carbon; Pd/alumina; metal nanoparticle; catalysis; Catalyst pre-reduction; in situ; SAXS; XANES; Pd-based catalysts; heterogeneous catalysis; Characterization techniques; Temperature-programmed reduction; TPR; CO chemisorption; TEM; X-ray absorption spectroscopy; Small Angle X-ray Scatteringheterogeneous catalysischemistryReagentvisual_arttemperature-programmed reductionvisual_art.visual_art_mediumTEMheterogeneous catalysiSmall Angle X-ray SpectroscopyDispersion (chemistry)Carbon
researchProduct

Amyloid β-peptide insertion in liposomes containing GM1-cholesterol domains.

2015

Neuronal membrane damage is related to the early impairments appearing in Alzheimer's disease due to the interaction of the amyloid β-peptide (Aβ) with the phospholipid bilayer. In particular, the ganglioside GM1, present with cholesterol in lipid rafts, seems to be able to initiate Aβ aggregation on membrane. We studied the thermodynamic and structural effects of the presence of GM1 on the interaction between Aβ and liposomes, a good membrane model system. Isothermal Titration Calorimetry highlighted the importance of the presence of GM1 in recruiting monomeric Aβ toward the lipid bilayer. Light and Small Angle X-ray Scattering revealed a different pattern for GM1 containing liposomes, bot…

0301 basic medicineLiposomeGangliosideAmyloid beta-PeptidesAmyloidCalorimetry Differential ScanningChemistryBilayerOrganic ChemistryBiophysicsIsothermal titration calorimetryG(M1) GangliosideBiochemistry03 medical and health sciences030104 developmental biologyMembraneCholesterolBiochemistryLiposomesThermodynamicslipids (amino acids peptides and proteins)A?-membrane interaction; Double layer perturbation; Isothermal titration calorimetry; Small angle X-ray scatteringLipid bilayerLipid raftBiophysical chemistry
researchProduct

Structural Features of β-Cyclodextrin Solvation in the Deep Eutectic Solvent, Reline

2020

The inherently amphiphilic nature of native cyclodextrins (CDs) determines their peculiar molecular encapsulation features, enabling applications such as targeted drug nanodelivery, aroma protection, etc. On the contrary, it may also lead to poor solubility in water and other organic solvents and to potentially detrimental flocking in these media, thus posing limitations to more extensive usage. Here we use small angle X-ray scattering to show that deep eutectic solvent reline (1:2 choline chloride:urea) succeeds in dissolving large amounts of beta-CD (at least 800 mg/mL, compared with the solubility in water of 18 mg/mL), without aggregation phenomena occurring. At the microscopic level, m…

deep eutectic solventMolecular dynamics010402 general chemistry01 natural sciencesCholinechemistry.chemical_compound0103 physical sciencesAmphiphileMaterials ChemistryCyclodextrinPhysical and Theoretical ChemistrySolubilityDissolutionchemistry.chemical_classification010304 chemical physicsCyclodextrinChemistryMDCyclodextrinDeep Eutectic SolventStructural PropertiesSolvationMolecular encapsulationsmall angle x-ray scattering0104 chemical sciencesSurfaces Coatings and FilmsDeep eutectic solventCyclodextrin Choline MD Drug deliveryChemical engineeringDrug deliveryCholine chloride
researchProduct

Glutamate 270 plays an essential role in K+-activation and domain closure ofThermus thermophilusisopropylmalate dehydrogenase

2014

The mutant E270A of Thermus thermophilus 3-isopropylmalate dehydrogenase exhibits largely reduced (∼1%) catalytic activity and negligible activation by K(+) compared to the wild-type enzyme. A 3-4 kcal/mol increase in the activation energy of the catalysed reaction upon this mutation could also be predicted by QM/MM calculations. In the X-ray structure of the E270A mutant a water molecule was observed to take the place of K(+). SAXS and FRET experiments revealed the essential role of E270 in stabilisation of the active domain-closed conformation of the enzyme. In addition, E270 seems to position K(+) into close proximity of the nicotinamide ring of NAD(+) and the electron-withdrawing effect…

Models MolecularStereochemistry030303 biophysicsMutantBiophysicsGlutamic AcidLarge scale facilities for research with photons neutrons and ionsSmall angle X-ray scatteringDehydrogenaseBiochemistry3-Isopropylmalate Dehydrogenase03 medical and health scienceschemistry.chemical_compoundIsopropylmalate dehydrogenaseFluorescence resonance energy transferStructural BiologyOxidoreductaseGeneticsMolecular BiologyX-ray crystallography030304 developmental biologychemistry.chemical_classificationSite-directed mutagenesis0303 health sciencesNicotinamidebiologyThermus thermophilusActivation by K+Cell BiologyThermus thermophilusbiology.organism_classificationProtein Structure TertiaryMOPSEnzyme ActivationKineticsCrystallographyEnzymechemistryMutationNAD+ kinaseFEBS Letters
researchProduct

The Pyridyl Functional Groups Guide the Formation of Pd Nanoparticles Inside A Porous Poly(4-Vinyl-Pyridine)

2015

The reactivity of palladium acetate inside a poly(4-vinylpyridine-co-divinylbenzene) polymer is strongly influenced by the establishment of interaction between the Pd precursor and the pyridyl functional group in the polymer. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and simultaneous X-ray absorption near edge structure (XANES) and small angle X-ray scattering (SAXS) techniques have been applied to monitor the reactivity of palladium acetate in the presence of H-2 and CO as a function of temperature. H-2 reduces palladium acetate to Pd nanoparticles and acetic acid. The pyridyl groups in the polymer play a vital role both in stabilizing the formed acetic acid, thu…

INFRARED-SPECTRADiffuse reflectance infrared fourier transformpolymersmall angle X-ray scatteringInfrared spectroscopychemistry.chemical_elementPALLADIUM(II) ACETATEIR spectroscopy; nanoparticles; palladium; polymers; small angle X-ray scattering; X-ray absorption spectroscopyPhotochemistryCatalysisCatalysisInorganic ChemistryAcetic acidchemistry.chemical_compoundRUTHENIUM NANOPARTICLESPARTICLE FORMATIONENVIRONMENTALLY BENIGNReactivity (chemistry)Physical and Theoretical ChemistryCARBON-MONOXIDEpolymerschemistry.chemical_classificationPOLYMERIC SUPPORTSnanoparticleIN-SITUOrganic ChemistryIR spectroscopy; nanoparticles; palladium; polymers; small angle X-ray scattering; X-ray absorption spectroscopy; Inorganic Chemistry; Organic Chemistry; Physical and Theoretical Chemistry; CatalysisX-ray absorption spectroscopyPolymerpalladiumchemistryIR spectroscopynanoparticlesPalladium(II) acetateTRANSITION-METAL COORDINATIONRESOLVED SAXS ANALYSISPalladium
researchProduct

The dimer-monomer equilibrium of SARS-CoV-2 main protease is affected by small molecule inhibitors

2021

AbstractThe maturation of coronavirus SARS-CoV-2, which is the etiological agent at the origin of the COVID-19 pandemic, requires a main protease Mpro to cleave the virus-encoded polyproteins. Despite a wealth of experimental information already available, there is wide disagreement about the Mpro monomer-dimer equilibrium dissociation constant. Since the functional unit of Mpro is a homodimer, the detailed knowledge of the thermodynamics of this equilibrium is a key piece of information for possible therapeutic intervention, with small molecules interfering with dimerization being potential broad-spectrum antiviral drug leads. In the present study, we exploit Small Angle X-ray Scattering (…

0301 basic medicineMolecular biologyProtein ConformationSciencemedicine.medical_treatmentDimerBiophysicsPlasma protein binding010402 general chemistryAntiviral Agents01 natural sciencesArticleDissociation (chemistry)03 medical and health scienceschemistry.chemical_compoundProtein structureX-Ray DiffractionDrug DiscoverymedicineHumansProtease InhibitorsCoronavirus 3C ProteasesVirtual screeningMultidisciplinaryProteaseSARS-CoV-2ChemistryQSARS-CoV-2 main protease Mpro enzymatic activity inhibition Small Angle X-ray Scattering small inhibitors virtual screeningRCOVID-19Computational BiologySmall moleculeComputational biology and bioinformatics0104 chemical sciencesMolecular Docking SimulationDissociation constant030104 developmental biologyBiophysicsMedicineThermodynamicsDimerizationProtein Binding
researchProduct

Inter-domain interactions in filamins

2014

kristallografiaCrystallographyrakennevuorovaikutusproteiineihin sitoutuminenfilamiinitimmunoglobulin-like domainssmall angle x-ray scatteringrakenneanalyysifilaminskiderakenteetinter-domain interactionsdomeenitproteiinitsitoutumispaikatmechanosensorröntgensironta
researchProduct

Quaternary structures of GroEL and naïve-Hsp60 chaperonins in solution: a combined SAXS-MD study

2015

The quaternary structures of bacterial GroEL and human naïve-Hsp60 chaperonins in physiological conditions have been investigated by an innovative approach based on a combination of synchrotron Small Angle X-ray Scattering (SAXS) in-solution experiments and molecular dynamics (MD) simulations. Low-resolution SAXS experiments over large and highly symmetric oligomers are analyzed on the basis of the high-resolution structure of the asymmetric protein monomers, provided by MD. The results reveal remarkable differences between the solution and the crystallographic structure of GroEL and between the solution structures of GroEL and of its human homologue Hsp60.

Materials scienceSettore BIO/16 - Anatomia UmanaSmall-angle X-ray scatteringGeneral Chemical EngineeringChemistry (all)Settore CHIM/06 - Chimica OrganicaGeneral ChemistryCrystal structureGroELSynchrotronlaw.inventionChaperoninChemistry (all); Chemical Engineering (all) Molecular Dynamics Heat Shock Proteins Small Angle X-ray Scatteringchemistry.chemical_compoundCrystallographyMolecular dynamicsMonomerchemistrySettore CHIM/03 - Chimica Generale E InorganicalawHSP60Chemical Engineering (all) Molecular Dynamics Heat Shock Proteins Small Angle X-ray ScatteringRSC Advances
researchProduct